Les limites de la connaissance 6-1) Réalisme et monde quantique: introduction


Les limites de la connaissance 6-1) Réalisme et monde quantique

introduction

 Conclusion de l’article: je pense que cette complémentarité que la physique quantique nous a révélé représente l’aboutissement de la « fin des certitudes » dans la pensée humaine, un retour à la complémentarité corps-esprit (Jésus n’a-t-il pas dit « rend à César ce qui est à César et à Dieu ce qui est à Dieu »). 

Nietzsche a écrit « Dieu est mort »… La désacralisation semble être « accomplie », le matérialisme se croît triomphant en ce début de « l’ère du Verseau ». Rien n’est moins sûr. La précipitation des évènements mondiaux et personnels, l’augmentation de la violence et de l’absurde montrent peut-être que la complémentarité dont parle Bohr n’est pas bien assimilée et comprise??? 


le chat de Schrödinger
l’énergie du vide
le laser.

Préambule

La science nous permettra-t-elle un jour de tout savoir? Ne rêve-t-elle pas d’une formule qui explique tout? N’y aurait-il rien qui entrave sa marche triomphale? Le monde deviendra-t-il transparent à l’intelligence humaine? Tout mystère pourra-il être à jamais dissipé?


Hervé Zwirn pense qu’il n’en n’est rien.La science, en même temps qu’elle progresse à pas de géant marque elle même ses limites. C’est ce que montre la découverte des propositions indécidables qui ont suivi le théorème de Gôdel. Ou celle des propriétés surprenantes du chaos déterministe. Ou encore les paradoxes de la théorie quantique qui ont opposé Einstein et Bohr  en mettant en cause toute notre manière de penser.

L’analyse de ces limites que la science découvre à sa propre connaissance conduit à poser une question plus profonde: qu’est ce que le réel?


Exergue:

« Comme Popper l’a remarqué, nos théories sont des filets que nous construisons pour attraper le monde. Nous ferions mieux de d’accepter le fait que la mécanique quantique a fait surgir un poisson plutôt étrange. »      Redhead (1987).

1) Les limites de la physique classique.


Dans l’article sur le chaos déterministe nous avons vu que le paradigme de la mathématisation possible de la nature doit être revu. Quels que soient les moyens théoriques ou techniques dont on disposera, quel que soit le temps qu’on acceptera de passer sur une prédiction, il existera toujours un horizon temporel infranchissable dans les prédictions. Cet horizon est variable selon la nature du système et les limites de principe dans la précision qu’on peut obtenir sur les conditions initiales mais il est fini dans tous les cas. L’univers ne peut plus être considéré comme une grande machine dont il est possible de prévoir le comportement au moyen de formules mathématiques, même complexes. L’équivalence entre déterminisme et prédictibilité est morte. 

La mécanique classique rencontre, par ailleurs, un autre type de limitation lié à son champ d’application. Il faut en effet lui substituer la théorie de la Relativité restreinte lorsque les vitesses ne sont plus négligeables devant la vitesse de la lumière (c = 300 000 km/s) ou de la Relativité générale dès que les champs de gravitation deviennent intenses. Toutes deux ont été découvertes par Einstein.

Mais de plus, le champ d’application de la mécanique classique est limité aux objets de taille macroscopique. Dès qu’on s’intéresse aux objets dont la dimension est de l’ordre des dimensions atomiques (typiquement 10-10 m), la mécanique classique doit être remplacée par la mécanique quantique. Son efficacité est remarquable pour décrire le comportement des phénomènes subatomiques (électrons, protons, neutrons…). Elle explique la couleur des corps, le fonctionnement des semi-conducteurs, les propriétés des métaux, les niveaux d’énergie des atomes, la superfluidité…Aucun phénomène physique n’a nécessité sa révision. Mais c’est théorie étrange qui a soulevé de nombreuses questions d’interprétation qui ne sont pas toutes entièrement résolues, malgré les progrès de ces dernières années. Elle nous force à reconsidérer entièrement beaucoup d’idées intuitives que nous avons sur les propriétés des objets, sur les rapports entre l’observateur et le phénomène observé, sur le déterminisme et elle nous conduit à modifier radicalement la conception du monde qu’on pourrait légitimement construire à partir de la mécanique classique. 

Quels que soient les problèmes soulevés, il s’agit toujours de problèmes d’interprétation du formalisme et jamais de problèmes d’application. Elle fonctionne remarquablement bien et c’est une des théories les plus précises qui ait été jamais été construites. L’interprétation du formalisme a conduit à des conséquences philosophiques qui semblaient contraires au bon sens ou à l’intuition. Bien que les débats ne soient pas tous clos, on peut considérer aujourd’hui que nous comprenons mieux ce qui est compréhensible en elle, et avons appris à ne pas chercher à comprendre (au sens de ramener à une image familière) ce qui ne l’est pas. 


2) Premier contact: La nature et le comportement de la lumière et de la matière


         2-1) un problème insoluble en physique classique: « la catastrophe ultraviolette »

La catastrophe ultraviolette, formulée dans la seconde moitié du xixe siècle et ainsi nommée par le physicien autrichien Paul Ehrenfest, est une prédiction contre-factuelle des théories classiques de la physique — électromagnétisme et physique statistique : uncorps noir à l’équilibre thermodynamique est censé rayonner un flux infini. Plus précisément, l’énergie rayonnée par bande de longueur d’onde doit tendre vers l’infini quand la longueur d’onde tend vers zéro, « dans l’ultraviolet » pour les physiciens de l’époque, puisque ni les rayons X ni les rayons gamma n’étaient alors connus.

Cette anomalie montra l’échec des théories classiques de la physique dans certains domaines et constitua une des motivations pour la conception de la physique quantique : en 1900Max Planck en jeta les prémisses, permettant de résoudre le problème du rayonnement du corps noir avec sa loi de Planck.

Un corps noir est modélisé par une cavité contenant de l’énergie sous forme d’un champ électromagnétique. En raison des conditions aux limites, le champ prend la forme d’une onde stationnaire admettant un ensemble discret de modes. Par exemple, les modes horizontaux d’une boîte ne peuvent avoir pour fréquence que

\,\nu = nc/L

où L est la longueur de la boîte, n un entier naturel non nul quelconque et c la vitesse de la lumière.

Ci-dessous: illustration des conditions aux limites en dimensions 1 et image des modes propres discrets possibles (voir aussi les articles Corde vibrante et Onde stationnaire)

Standing wave.gif

Harmonic partials on strings.svg

En électromagnétisme, on montre plus généralement que le nombre de modes par unité de fréquence de la cavité est proportionnelle au carré de la fréquence :

\,\frac{\mathrm{d}N}{\mathrm{d}\nu} \propto \nu^2.

En appliquant le théorème d’équipartition de l’énergie, chaque mode doit contenir une énergie kT/2, où k est la constante de Boltzmann et T la température du système. Il en résulte que l’énergie par unité de fréquence suit la loi de Rayleigh-Jeans :

\frac{\mathrm{d}E}{\mathrm{d}\nu} \propto T\nu^2.

Ainsi l’énergie par unité de fréquence tend vers l’infini lorsque la fréquence tend vers l’infini et l’énergie totale est infinie.

Planck obtint pour la première fois un bon accord théorie/expérience en supposant que l’énergie électromagnétique, au lieu d’être continue comme dans la théorie classique, ne peut prendre que des valeurs discrètes multiples de h c/ λ, où c est la vitesse de la lumière dans le vide : c = 299.792.458 m.s-1, et h, la constante de Planck, vaut h = 6,625 × 10-34 J.s.

Ce qui n’était alors qu’un « artifice de calcul » permet de trouver une formule qui correspond à l’expérience, la loi de Planck :

Cette formule, comme on pourrait s’y attendre, redonne la formule classique si on fait tendre h vers zéro, c’est-à-dire si on considère l’énergie électromagnétique comme continue.

C’est Einstein, qui, le premier, pour expliquer l’effet photoélectrique, considéra ce quanta de Planck comme réel. En fait, l’avènement de la physique quantique a donné un sens à cet « artifice de calcul » des premiers temps, et la raison de la quantification de l’énergie est maintenant comprise.

          2-2) la double nature de la matière et de la lumière.


          a) Savoir de quoi est constituée la lumière est une question que les hommes se sont toujours posée. Pythagore et Platon avaient chacun une théorie. Dans la première moitié du XIXe siècle, deux conceptions s’opposaient. La position dominante, celle de Huyghens, développée par Fresnel et Young stipulait que la lumière est faite d’ondes transversales de propageant à travers un milieu élastique , l’éther. La deuxième, anciennement avancée par Newton, était une conception corpusculaire. Dans la conception ondulatoire, la lumière se propageait plus rapidement dans l’air que dans l’eau, alors que c’était l’inverse pour la conception corpusculaire.   En 1850, Foucault réfuta l’hypothèse corpusculaire par une comparaison des vitesses. Par la suite, la notion d’éther fut remplacée par Maxwell et Hertz par celle d’ondes électromagnétiques transversales, mais ils continuèrent à admettre que la lumière était un phénomène ondulatoire. 

fentes d’Young

– Les interférences: un argument en faveur de la nature ondulatoireLes fentes de Young (ou interférences de Young) désignent en physique une expérience qui consiste à faire interférer deux faisceaux de lumière issus d’une même source, en les faisant passer par deux petits trous percés dans un plan opaque. Cette expérience fut réalisée pour la première fois par Thomas Young en 1801 et a permis de comprendre le comportement et la nature de la lumière. Sur un écran disposé en face des fentes de Young, on observe un motif de diffraction qui est une zone où s’alternent des franges sombres et illuminées.

Cette expérience permet alors de mettre en évidence la nature ondulatoire de la lumière. Depuis, Elle a été également réalisée avec de la matière, comme les électronsneutronsatomesmolécules, avec lesquels on observe aussi des interférences. Cela illustre la dualité onde-particule qu’on évoquera par la suite: les interférences montrent que la matière présente un comportement ondulatoire, mais la façon dont ils sont détectés (impact sur un écran) montre leur comportement particulaire.

Des expériences similaires aux fentes de Young impliquant des électrons ont été réalisées. En 1961, Claus Jönsson à Tübingen produisait des interférences avec un fil d’araignée métallisé séparant un faisceau d’électrons en deux. Une expérience semblable, avec un fil d’araignée métallisé, était réalisée en 1956 par Faget et Fert à l’université de Toulouse. En 1989, Tonomura et al. ont envoyé un électron sur un biprisme à électrons. Ils ont observé la figure d’interférence prédite par la théorie.

Pour les interférences, l’explication est simple si on suppose que la lumière est composée d’ondes sinusoïdales qui peuvent suivre deux trajets différents: la distance parcourue n’est donc pas la même et selon le point d’arrivée, les rayons peuvent arriver en phase (la différence des longueurs des trajets est un multiple de la longueur d’onde), ou pas. Dans le premier cas, les rayons s’ajoutent donnant un point clair, dans le deuxième cas ils se retranchent, aboutissant à un point sombre. Une mesure de l’écartement des franges permet d’en déduire la longueur d’onde. Cette expérience est un argument fort en faveur de la nature ondulatoire de la lumière, car elle en fournit une explication naturelle. 


          b) L’effet photoélectrique: un argument en faveur de de la nature corpusculaire

Il a été découvert en 1887 par Heinrich Rudolf Hertz qui en publia les résultats dans la revuescientifique Annalen der Physik[2].

Albert Einstein fut le premier à en proposer une explication, en utilisant le concept de particule de lumière ou quantum, appelé aujourd’hui photon, initialement introduit par Max Planck dans le cadre de l’explication qu’il proposa lui-même pour l’émission du corps noir.

Albert Einstein a expliqué qu’il était provoqué par l’absorption de photons, les quantum de lumière, lors de l’interaction du matériau avec la lumière.

L’effet photoélectrique est l’émission d’électrons par un matériau, généralement métallique lorsque celui-ci est exposé à la lumière ou un rayonnement électromagnétique de fréquencesuffisamment élevée, qui dépend du matériau.

Dans l’effet photoélectrique, on éclaire une plaque de métal et celle-ci émet des électrons. Les électrons ne sont émis que si la fréquence de la lumière est suffisamment élevée (la fréquence limite dépend du matériau), alors que leur nombre, qui détermine l’intensité du courant, est proportionnel à l’intensité de la source lumineuse.

Cet effet ne peut être expliqué de manière satisfaisante lorsque l’on considère que la lumière est une onde, la théorie acceptée à l’époque, qui permet d’expliquer la plupart des phénomènes dans lesquels la lumière intervient, tel l’optique, et qui était traduite mathématiquement par la théorie de James Clerk Maxwell.

En effet, si l’on considère la lumière comme une onde, en augmentant son intensité, on devrait pouvoir fournir suffisamment d’énergie au matériau pour en libérer les électrons. L’expérience montre que l’intensité lumineuse n’est pas le seul paramètre, et que le transfert d’énergie provoquant la libération des électrons ne peut se faire qu’à partir d’une certaine fréquence.

L'effet photoélectrique, l'onde électromagnétique incidente éjecte les électron du matériau

L’effet photoélectrique, l’onde électromagnétique incidente éjecte les électron du matériau

L’interprétation de Einstein, l’absorption d’un photon, permettait d’expliquer parfaitement toutes les caractéristiques de ce phénomène. Les photons de la source lumineuse possèdent une énergiecaractéristique déterminée par la fréquence de la lumière. Lorsqu’un électron du matériau absorbe un photon et que l’énergie de celui-ci est suffisante, l’électron est éjecté; sinon l’électron ne peut s’échapper du matériau. Comme augmenter l’intensité de la source lumineuse ne change pas l’énergie des photons mais seulement leur nombre, on comprend aisément que l’énergie des électrons émis par le matériau ne dépend pas de l’intensité de la source lumineuse

Cette proposition est révolutionnaire, car elle signifie à une conception corpusculaire de la matière, qui semblait pourtant avoir été réfutée. 


          c) Le comportement ondulatoire de la matière.

L’effet photoélectrique n’est compréhensible que si la lumière est composé de particules, les photons. Mais, l’expérience des franges ne l’est que si la lumière est une onde. On est donc confronté à deux expériences cruciales donnant des résultats incompatibles. Louis de Broglie, en 1923, fit une hypothèse audacieuse, sachant que la relativité montre que la masse est une forme d’énergie (E=mc2et que l’énergie peut être reliée à la fréquence.

 « Mon idée essentielle était d’étendre à toutes les particules la coexistence des ondes et des corpuscules découverte par Einstein en 1905 dans le cas de la lumière et des photons. » « À toute particule matérielle de masse m et de vitesse v doit être « associée » une onde réelle » reliée à la quantité de mouvement par la relation :


\lambda = \frac{h}{p} = \frac {h}{{m}{v}} \sqrt{1 - \frac{v^2}{c^2}}

Cette théorie posait les bases de la mécanique ondulatoire. Elle fut soutenue par Einstein, confirmée par les expériences de diffraction des électrons de Davisson et Germer, et surtout généralisée par les travaux de Schrödingeroù λ est la longueur d’ondeh la constante de Planckp la quantité de mouvementm la masse au reposv sa vitesse et c la célérité de la lumière dans le vide.

Cela permet de calculer la fréquence associée à une masse m:   v = mc2/h. La prédiction que la matière se comporte de matière ondulatoire paraissait insensée à l’époque (et encore maintenant?), tant il est évident que tout dans notre expérience prouve le contraire. la confirmation vint en 1927 quand Davisson et Germer observèrent  pour la première fois des figures de diffraction de faisceaux d’électrons avec un fréquence correspondant exactement à celle prévue par De Broglie. La symétrie entre ondes et corpuscules était rétablie; la lumière, comme la matière, manifestaient un comportement tantôt ondulatoire, tantôt corpusculaire. 


Historique: La théorie en cours à l’époque pour expliquer l’atome était celle de Bohr (1913).     Ce modèle est un complément du modèle planétaire d’Ernest Rutherford qui décrit l’atome d’hydrogène comme un noyau massif et chargé positivement, autour duquel se déplace un électron chargé négativement.Le problème posé par ce modèle est que l’électron, charge électrique accélérée, devrait selon la physique classique, rayonner de l’énergie et donc finir par s’écraser sur le noyau.

Niels Bohr propose d’ajouter deux contraintes :

  1. L’électron ne rayonne aucune énergie lorsqu’il se trouve sur une orbite stable (ou orbite stationnaire). Ces orbites stables sont différenciées, quantifiées. Ce sont les seules orbites sur lesquelles l’électron peut tourner.
  2. L’électron ne rayonne ou n’absorbe de l’énergie que lors d’un changement d’orbite.

Pour commodité de lecture, les orbites possibles de l’électron sont représentées dans la littérature comme des cercles de diamètres quantifiés. Dans le modèle quantique, il n’existe en fait pas de position ni de vitesse précise d’un électron, et il ne peut donc parcourir un « cercle » ; son orbitale peut en revanche être parfois sphérique.


C’est en 1926, avec la mécanique ondulatoire par Schrödinger et celle de la mécanique des matrices par Heisenberg, Born et Pascual Jordan, que que naît la mécanique quantique. Les deux formalismes seront ensuite intégrés par Paul Dirac la version actuellement en vigueur. Abandonnons à ce stade l’aspect historique pour examiner le comportement quantique.


          e) Le comportement quantique.

L’objet qui servira d’exemple est l’électron, mais les comportements seront les mêmes pour tous les objets quantiques.

e-1)Interprétation classique du phénomène pour la lumière.

Schéma de principe des fentes de Young.

Illustration de l’apparition de franges d’interférences.

Dans l’expérience de Young, on utilise une source lumineuse S monochromatique1 et on interpose une plaque percée de 2 fentes. Celles-ci se comportent comme des sources secondaires S1 et S2. On observe alors, sur un écran placé derrière, des franges alternativement sombres et claires : les ondes issues de S1 et S2 interfèrent entre elles.

Considérons maintenant un point M situé sur l’écran. Il est éclairé par les ondes lumineuses émises par S1 et S2 qui peuvent s’écrire respectivement, au point M :

 E_1 = E_0 \cdot \sin (\omega \cdot  t)\
 E_2 = E_0 \cdot \sin (\omega \cdot  t -\Delta\varphi)\ ,

où E0 est l’amplitude2, ω la pulsation des ondes, Δφ leur déphasage et t le temps.

Δφ caractérise le fait qu’une onde a un certain retard par rapport à l’autre. En effet, pour arriver au point M, le chemin à parcourir n’est pas de la même longueur pour la lumière qui provient d’une source ou de l’autre.

Si Δφ est un multiple de 2π, les ondes s’ajoutent et on obtient une frange lumineuse sur l’écran, ce que l’on appelle une interférence constructive. En revanche si Δφ est un multiple impair de π alors les ondes s’annulent et on obtient une frange sombre sur l’écran, c’est alors une interférence destructive. Cela explique pourquoi on observe, sur l’écran, des franges successivement claires et sombres. Mais il n’y a pas, a priori, de formule simple permettant de décrire ces franges. Pour simplifier le problème, il est possible de supposer que l’écran est placé loin des fentes.

e-2) Le comportement quantique des électrons.

On reprend l’expérience faite avec des photons (lumière), mais avec une source ponctuelle d’électrons, vers une plaque comportant deux trous A et B. On peut imaginer qu’on place sur la deuxième plaque des détecteurs régulièrement espacés autour de la position centrale et qui font entendre un petit clic quand ils reçoivent un électron. Faisons l’expérience en bouchant le trou A et en laissant le trou B ouvert. On constate que les électrons arrivent bien un par un car jamais deux détecteurs ne cliquent en même temps. Si on attend suffisamment longtemps, on obtient la courbe de la figure du bas qui donne la répartition du nombre d’électrons reçus en fonction de la position (figure d’interférence). On observe un maximum en face du trou B. L’expérience symétrique (laisser le trou A ouvert et boucher le trou B) donne un résultat analogue, mais avec un maximum en face du trou A. 

Ouvrons maintenant les deux trous simultanément: on  s’attend à ce que la courbe soit la somme des deux courbes précédentes. En effet, les électrons passent ou bien par A, ou bien par B, donc en tout point de la plaque. Le nombre d’électrons qui parviennent à la plaque est  la somme de ceux qui sont passés par A et de ceux qui sont passés par B. Les premiers vont construire la courbe présentant un maximum en face du trou A les seconds la courbe présentant un maximum en face du trou B. Le dispositif est symétrique, il y aura en moyenne autant d’électrons passant par chaque trou et la courbe totale sera bien donnée par la somme des deux courbes. 

Mais, surprise! la courbe obtenue n’est pas du tout la somme des deux courbes à laquelle nous nous attendons, elle est identique à celle qui donne l’intensité lumineuse dans le cas de l’expérience avec des photons. On observe l’équivalent de franges d’interférences. Or, ces dernières sont la signature d’un comportement ondulatoire. Une tentative d’explication serait que les électrons, dont certains passent par le trou A et d’autres par le trou B, interagissent de telle manière que les chocs conduisent à ce qu’ils ne puissent arriver que dans certaines alternées de l’écran. Une telle théorie, certes complexe, est possible. Elle a été testée en réduisant progressivement l’intensité du faisceau jusqu’à être assuré que les électrons sont émis un par un avec un intervalle de temps suffisant entre chaque émission.Il devrait y avoir disparition des franges d’interférence. 


Emission des électrons un par un:

Les franges d’interférence se constituent petit à petit

L’expérience de Young a par la suite été affinée, notamment faisant en sorte que la source S émette un quantum à la fois. Par exemple, on peut à l’heure actuelle émettre des photons ou des électrons un par un. Ceux-ci sont détectés un par un sur l’écran placé après les fentes de Young : on observe alors que ces impacts forment petit à petit la figure d’interférences. Selon des lois classiques concernant les trajectoires de ces corpuscules, il est impossible d’interpréter ce phénomène.

L’interprétation quantique du phénomène est la suivante (voir chapitre suivant: quelques éléments de mécanique quantique): le quantum émis prend un état superposé lors du franchissement de la plaque : |quantum passe par S1> + |quantum passe par S2> (voir Notation bra-ket). De la fonction d’onde résultante, on peut déterminer pour chaque point de la plaque la probabilité que le quantum y soit détecté. On peut démontrer que la distribution des probabilités suit la figure d’interférence. Autrement dit, le quantum passerait par les deux fentes à la fois, et interfèrerait avec lui-même.

Densité de probabilité d’un électron au passage des deux fentes

La figure ci-contre montre l’évolution de la fonction d’onde d’un électron au passage des deux fentes. Les niveaux de gris représentent la densité de probabilité de présence de l’électron. La taille réelle de l’électron est en fait bien plus petite que sa zone de probabilité de présence (en forme de cercle) initiale. On voit nettement que l’électron « interfère avec lui-même »: les franges d’interférences sont bien visibles aux sorties des deux fentes (l’électron possède aussi une certaine probabilité de « rebondir » et de former également une figure d’interférence vers l’arrière).

Destruction de la figure d’interférence: éclairons maintenant les trous pour voir à travers lequel passe chaque électron. Problème de la mesure. 

Ce n’est donc pas le choc des électrons qui les guide au bon endroit, mais on pourrait se dire qu’il suffit de regarder, électron par électron comment se fait-il que l’électron (ou le photon) interfère avec lui-même?  Quand un électron passe par le trou A, on verra un éclair proche du trou et symétriquement pour le trou B. Si un électron se coupe en deux, on observera deux éclairs simultanés. Que voit-on? On constate que chaque électron passe par un trou et un seul et que jamais un électron ne s’est coupé en deux (on n’observe jamais deux éclairs simultanés).  On peut même retracer, électron par électron par quel trou s’est fait le passage. On ne voit alors pas comment le résultat pourrait être différent de la somme des deux courbes correspondant chacune au bouchage d’un trou. Chaque électron est bien passé par un trou ou par un autre, nous l’avons vu. En effet, la courbe est bien conforme à ce que nous attendons, elle est la somme des deux courbes! Le fait d’avoir modifié le dispositif a changé le résultat et les franges d’interférence ont disparu. Les électrons se comportent dans ce cas comme des particules.

Destruction de la figure d’interférence

Le résultat net de l’expérience est qu’on détecte bien que le photon passe soit dans la fente de droite, soit dans la fente de gauche, mais alors la figure d’interférence disparait : le photon n’est plus dans un état superposé suite à la mesure. La détection du photon dans l’une des fentes provoque un « effondrement de la fonction d’onde » et de l’état superposé. Autrement dit, toute tentative de savoir de quel côté le quantum est passé ne permet plus d’obtenir des interférences.

L’expérience de Young permet donc également de mettre en évidence le problème de la mesure quantique. Ce problème est que les lois quantiques ne prévoient pas directement cet effondrement, et qu’il n’existe donc pas de définition objective et rigoureuse de ce qu’est une « mesure » (voir traitement complet de ce problème dans les articles Chat de Schrödinger et Problème de la mesure quantique).

Exemple de fullerène, aussi appelé « footballène »

A l’heure actuelle, des développements sur le sujet permettent de réaliser des expériences très similaires sur des objets de plus en plus volumineux, comme les atomes, les molécules, les condensats de Bose-Einstein.

En particulier, on a observé des interférences avec des molécules de fullerène.3 Ces expériences démontrent que la vision purement corpusculaire de la matière n’est pas satisfaisante avec des objets de plus en plus gros, d’où la question récurrente de la dualité onde-corpuscule en physique quantique.

          2-3) En conclusion de ce chapitre 2 on peut dire que cette expérience renferme l’essentiel du mystère du comportement quantique. 

Les électrons se comportent tantôt comme des ondes, tantôt comme des particules. C’est ce que Bohr appelait la « complémentarité ». Cela ne dit pas être entendu comme la complémentarité de deux aspects coexistant, comme le serait, par exemple la description d’un cylindre par ses projections circulaires et rectangulaires. Elle implique une exclusion, chaque aspect se manifestant au détriment de l’autre.  Aucun objet habituel ne se comporte de cette manière. Comme le dit Feymann: « On peut se demander comment ça marche vraiment. Quel est le mécanisme en oeuvre en réalité? Personne ne connaît aucun mécanisme. Personne ne peut vous donner de ce phénomène une explication plus profonde que la mienne – c’est à dire une simple description. »


Pour Bohr: « De même que le concept de relativité exprime que tout phénomène physique dépend essentiellement du système de référence qui sert à l’encadrer dans l’espace et le temps, de même le concept de Complémentarité est un symbole de la limitation, fondamentale, en physique atomique, de notre représentation habituelle de phénomènes indépendants des moyens d’observation ».  

En 1927 Bohr précise:
 » en d’autres domaines de la connaissance nous rencontrons des situations rappelant ce que nous connaissons en physique quantique…
Ainsi l’intégrité des organismes vivants et les caractéristiques de la conscience des individus autant que celle des cultures humaines présentent des traits d’un tout, qui impliquent pour en rendre compte un mode de description complémentaire »

Bohr se réfère souvent à Möller un psychologue-philosophe qui écrit à propos d’un étudiant cherchant en vain un emploi :

 » Mes spéculations sans fin m’interdisent d’arriver à quoi que ce soit. Qui plus est j’en viens à penser à ma propre pensée de la situation où je me trouve. Et même je pense que j’y pense et je me scinde en une suite infiniment régressive de « moi » qui se scrutent les uns les autres. Je ne sais sur quel moi me fixer, comme étant le moi effectif et de fait au moment même de m’arrêter à l’un d’eux il est encore un autre moi qui s’y arrête. Je m’y perds, et j’en ai le vertige, comme à plonger du regard dans un abîme insondable et je retire de mes méditations une migraine abominable… »

Bohr se réfère également aux travaux  de James ( psychologue) qui définit lui aussi un concept de complémentarité:

 » …chez certaines personnes la conscience globlale susceptible d’exister peut éventuellement se scinder en parties qui coexistent tout en restant dans l’ignorance mutuelles les unes par rapport aux autres…et se répartissent entre elles les objets de connaissance.
Accorder un objet à l’une des consciences c’est par là même le soustraire à l’autre ou aux autres. Si l’on excepte un certain fond commun comme la capacité d’user du langage etc…ce dont le moi supér
ieur a connaissance le moi intérieur reste ignorant et vice versa »

Oppenheimer généralisera:

 » La compréhension de la complémentarité de la vie consciente et de son interprétation physique me parait un élément permanent de l’intelligence humaine et l’expression exacte des vieilles conceptions connues sous le nom de parallélisme psychophysique…
Car la vie consciente et ses relations avec la description du monde physique offrent encore bien d’autres exemples
relation entre les faces intellectives et affectives de nos vies…entre la connaissance ou l’analyse et l’émotion ou le sentiment…
relation entre l’esthétique et l’héroïque…entre le sentiment et l’obligation morale qui précède et définit l’action…
relation entre classique entre l’auto-analyse, la détermination de ses mobiles et de ses fins personnels et ce libre arbitre cette liberté de décision et d’action qui lui sont complémentaires…

Être affecté par la crainte ou la gaieté, être ému par la beauté, prendre un engagement ou une détermination, comprendre quelque vérité autant de modes complémentaires de l’esprit humain…
Tous sont partie intégrante de la vie spirituelle de l’homme…
aucun ne peut remplacer les autres… et lorsque l’on fait appel à l’un les autres sont en sommeil…

La fécondité et la diversité de la physique, celles plus considérables de l’ensemble des sciences de la nature, la richesse plus familière mais encore étrange et infiniment plus grande de la vie de l’esprit humain, accrues par des moyens complémentaires, non immédiatement compatibles et irréductibles l’un à l’autre sont plus qu’ harmonieuses,
elles sont éléments de la peine de l’homme et de sa splendeur, de sa débilité et de sa puissance, de sa mort, de son existence éphémère et de ses immortels exploits… »

Le philosophe et scientifique Lupasco va plus loin
pour lui le problème vient que l’homme reste marqué par la la logique classique marquée par la notion d’objet et par le principe de non contradiction…

Or cette logique binaire n’arrive pas à rendre compte de l’infinie diversité du Réel…
pour lui l’antagonisme est à la base de tout…
et l’univers est par nature contradictoire…
Pour lui le comportement quantique est fondamental… car au fond des choses dans la mesure où il est la loi des phénomènes microscopiques à la base de l’Univers…

Il refuse la logique classique du oui ou du non, pour lui seule une logique du tiers inclus peut rendre compte de la réalité
Actualisation- Potentialisation- état t …
l’actualisation est ce que l’on mesure…
la potentialisation ce qui existe… et qui n’est pas pris en compte
t   l’équilibre entre les deux… l’état auquel on doit arriver

Nicolescu ( physicien)  introduit dans le schéma précédent la notion de niveau de Réalité … qu’il ne faut pas confondre avec le niveau de représentation des choses ou d’organisation.
le niveau de réalité correspond à des systèmes qui restent invariants sous l’action d’une loi: exemples l’échelle des particules, l’échelle de l’homme  ou encore l’échelle des planètes
ainsi ce qui est contradictoire à un niveau 1 ( onde-corpuscule, séparabilité-non-séparabilité) peut être unifié au niveau 2 avec l’état t ( comme le montre le triangle ci dessous…
unification par le haut en quelque sorte…)

 En conclusion, je pense que cette complémentarité représente l’aboutissement de la « fin des certitudes » dans la pensée humaine, un retour à la complémentarité corps-esprit (Jésus n’a-t-il pas dit « rend à César ce qui est à César et à Dieu ce qui est à Dieu »). 

Nietzsche a écrit « Dieu est mort »… La désacralisation semble être « accomplie », le matérialisme se croît triomphant en ce début de « l’ère du Verseau ». Rien n’est moins sûr. La précipitation des évènements mondiaux et personnels, l’augmentation de la violence et de l’absurde montrent peut-être que la complémentarité dont parle Bohr n’est pas bien assimilée et comprise??? 


Prochain article: Les limites de la connaissance 6) Réalisme et monde quantique 

6-2: éléments de physique quantique


Laisser un commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion / Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion / Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion / Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion / Changer )

Connexion à %s